Set Based Implementation#
GlobalSetBasedReflectiveEquilibrium#
- class rethon.GlobalSetBasedReflectiveEquilibrium#
Bases:
GlobalReflectiveEquilibrium
Methods
account
(commitments, theory)Account of the theory w.r.t.
achievement
(commitments, theory, ...)The achievement function
.commitment_candidates
(**kwargs)Implements
basics.ReflectiveEquilibrium.commitment_candidates()
default_model_parameters
()Default model parameters of the standard model.
dialectical_structure
()Return the dialectical structure on which the model is based.
faithfulness
(commitments, initial_commitments)Faithfulness of the commitments w.r.t.
finished
(**kwargs)Implements
ReflectiveEquilibrium.finished()
.global_optima
(initial_commitments)Searches for globally optimal theory-commitment pairs (according to the achievement function).
hamming_distance
(position1, position2, penalties)The weighted Hamming distance.
is_dirty
()Checks whether the model demand an update of internal attributes.
model_name
()Model name.
model_parameter
(name)Returns model parameters by names.
model_parameter_names
()Returns names (keys) of the model parameters.
model_parameters
()Getting all model parameters as dict.
model_parameters_set_to_default
()Resets the model parameters to their default values.
next_step
([time])Triggers search for next commitments/theory.
penalty
(position1, position2, sentence, ...)A penalty function.
pick_commitment_candidate
(...)Implements :py:func:ReflectiveEquilibrium.pick_commitment_candidate.
pick_theory_candidate
(theory_candidates, ...)Implements :py:func:ReflectiveEquilibrium.pick_theory_candidate.
re_process
([initial_commitments, max_steps])Process of finding a reflective equilibrium based on given initial commitments.
reset_model_parameters
(parameters)Resetting model parameters.
set_dialectical_structure
(dialectical_structure)Set the dialectical structure on which the model is based.
set_dirty
(dirty)Should be used to indicate whether attributes are reset that demand updating other attributes of the model.
set_initial_state
(initial_commitments)Set the initial state of the model.
set_model_parameters
([parameters])Setting model parameters either by a dictionary or key-value pairs.
set_state
(state)Setting the current state of the model.
state
()Getting the current state of the model as
REState
.systematicity
(theory)Systematicity of the theory.
theory_candidates
(**kwargs)Implements
basics.ReflectiveEquilibrium.theory_candidates()
update
(**kwargs)Implements
basics.ReflectiveEquilibrium.update()
get_id
set_id
- penalty(position1, position2, sentence, penalties)#
A penalty function.
The penalty function calculates a penalty value for two sentences of two positions given a list of penalty-value and is defined by
- Parameters:
position1 (
Position
) –position2 (
Position
) –sentence (
int
) – The index of the sentences with both positions.penalties (
List
[float
]) – A float-list of penalty values.
- Return type:
float
- Returns: